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Abstract

Scientific applications often need to access remotely
located files. However, many remote I/O systems lack
standard APIs that allow efficient and direct access
from application codes. This work presents MPI-IO/L,
a remote I/O facility for MPI-IO by using Logistical
Networking. This combination not only provides high-
performance and direct remote I/O using the standard
parallel I/O interface but also offers convenient man-
agement and sharing of remote files. We show the
performance tradeoffs between various remote I/O ap-
proaches implemented in the system, which can help
scientists identify preferable I/O options for their own
applications. We also discuss how Logistical Network-
ing could be improved to work better with parallel I/O
systems such as ROMIO.

1 Introduction

Scientists are running an increasing number of ap-
plications in distributed environments, with the fre-
quent need to store and retrieve data at remote lo-
cations. For example, a scientist running a simula-
tion at a remote supercomputing center might wish to
store the data locally to visualize it on her own ma-
chine. Also, a group of collaborating scientists geo-
graphically separated from one another might wish to
set up a central data repository for efficient data shar-
ing. Further, the emergence of Grid computing [8] en-
ables the execution of high-performance distributed ap-
plications, which might transfer data among their com-
ponents through a remote I/O mechanism.
Traditionally, scientists have performed remote I/O

by temporarily staging remote files on local disks. Al-
though staging seeks to boost the I/O performance by
collocating data with the application, it imposes sev-
eral problems. First, since it does not allow applica-
tions to directly access remote files, it causes extra disk
I/O. Second, since each file is staged in its entirety, ex-
cessive transfer occurs when only a portion of the file
is needed. Third, it requires enough space on the local

disk to hold the staged files. Fourth, consistency prob-
lems can arise if the remote file has been modified at the
source after it has been staged locally. Fifth, staging is
often done manually and thus is cumbersome.
A better remote I/O system should address the fol-

lowing I/O and file management needs typically re-
quired by many scientists.
Functionality. Direct access to any portion of remote
files through a convenient interface should be possi-
ble. Since many scientific codes are parallel, support-
ing parallel I/O is highly beneficial.
Performance. Remote I/O is often slow because of the
low Internet bandwidth and the amount of data to be
accessed. It is important to reduce apparent remote I/O
cost by using high-performance data transfer mecha-
nisms and optimizations [2, 10, 13].
Management. Scientific data files are often replicated
or striped across multiple remote storages for fault tol-
erance, a faster access or because of storage constraints.
I/O to such “distributed” files requires detailed infor-
mation about each replica or stripe (e.g., its physical
location and mapping to the logical file). Manually
maintaining such information can be cumbersome, es-
pecially with a number of logical files. It can be man-
aged better by an I/O system.
Sharing. Scientific data is often shared among a group
of people. Giving out the information about the files
to others and accessing the files using such information
should be easy. Also, file access should be limited to
authorized users only. It is desirable for an I/O system
to support efficient and secure sharing.
This work addresses the above issues by integrating

a parallel I/O library with an efficient and flexible re-
mote I/O functionality. We chose the ROMIO [15] im-
plementation of MPI-IO [12] for the testbed I/O library
and the Logistical Networking software [5] for the re-
mote I/O and file management capability. MPI-IO is
the de facto parallel I/O interface standard, used both
directly by applications and by high-level libraries such
as Parallel NetCDF [11] and HDF5 [1]. Supporting re-
mote I/O through MPI-IO thus enables many applica-
tions to perform remote I/O transparently without code
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changes. Logistical Networking provides powerful
remote I/O mechanisms, including high-performance
data transfer by multiple concurrent streams and intelli-
gent download schemes [13]. It also flexibly describes
the relationship between a logical file and its associ-
ated physical files with XML, thereby easing the shar-
ing (Section 2).
The contributions of this work are as follows.

First, we identify the design issues for a Logistical
Networking-based remote I/O facility for a parallel I/O
system and provide an implementation with ROMIO,
called MPI-IO/L. Second, we optimize basic I/O op-
erations for MPI-IO/L and discuss the tradeoffs of the
proposed approaches, helping users select the prefer-
able remote I/O options for their applications. Third,
we identify ways to make Logistical Networking work
better with parallel I/O systems such as ROMIO.

2 Logistical Networking

The goal of Logistical Networking is to provide scal-
able and sharable storage resources and services that
increase the efficiency, performance, and functionality
of distributed applications. The center of this technol-
ogy is the Network Storage Stack (Figure 1), through
which writable storage can be added to the Internet as
a network resource. It was modeled after the Internet
Protocol (IP) stack. At the bottom is the physical layer,
which includes storage media such as disk, memory, or
tape. Next is the access layer, the storage service pro-
vided by the operating system such as disk driver, anal-
ogous to the link layer in the IP stack. The middle lay-
ers are the core of Logistical Networking and consist of
IBP, L-Bone, exNode, and LoRS. Each is described be-
low in detail. On top of them sits the middleware layer,
which provides services using underlying components
(e.g., ROMIO, Parallel netCDF, and HDF5). At the top
is the application layer.
IBP. The Internet Backplane Protocol (IBP) allows
anyone to share disk or memory space on her machine
over the network. Unlike FTP servers, these IBP depots
do not maintain user accounts, file system hierarchies,
and the like. A client can request an allocation (a spe-
cific amount of space) for a specific amount of time to

any depots and can access and share the allocation until
it expires. Each depot is preset with the total amount of
storage space that it is willing to share and the maxi-
mum time allowed for any single allocation.
IBP was designed to provide a simple, yet highly

scalable storage service and thus implements only the
following operations. The operation allocate() ei-
ther grants or denies client allocation requests based
on the depot’s currently available space and the max-
imum duration policy. For a granted request, the depot
sends a set of capabilities (keys) to the client, which are
needed for write, read, and manage access (described
below) to the allocation. If a client wishes to share
an allocation with others, she can give them a sub-
set of capabilities (e.g., read only) associated with it
and control their access to the allocation. The opera-
tions store() and load() write to and read from
an allocation. While read can begin from any offset
within the allocation, writes are currently append only.
The operations copy() and mcopy() perform third-
party transfers between IBP depots, and the operation
manage() changes the properties of an allocation,
such as size and duration.
L-Bone. To access depots, clients need the hostnames
and their port numbers. The Logistical Backbone (L-
Bone) helps users find available public depots and their
associated information. L-Bone is an LDAP-based
server that catalogs available depots and polls them pe-
riodically to determine available storage. In addition
to the hostname, port, allocation duration policy, and
recent space availability, L-Bone can also store infor-
mation regarding each depot, such as its geographical
location. Clients can send a request to an L-Bone server
for a list of depots that meet specific criteria.
ExNode. A client may need to allocate more space than
any single depot may have (or is willing to give a sin-
gle allocation request) or may need to create replicas on
different depots. Either case requires having multiple
allocations and capabilities for a logical file. The exN-
ode is a data structure that facilitates handling of mul-
tiple allocations by aggregating and annotating them.
ExNodes resemble Unix inodes in that just as an in-

ode aggregates individual disk blocks to create large
files, an exNode aggregates IBP allocations and pro-
vides a mapping from the logical view of a file to the
allocations that store the actual data. Unlike the inode,
however, the exNode allows for varying size allocations
and for replication of data in different allocations. Also,
an inode has fixed metadata, while the exNode allows
for arbitrary metadata for the global exNode as well as
for mappings to individual IBP allocations. The exN-
ode also allows for a function that describes whether
the stored data was encoded before being stored (e.g.,
encrypted, compressed). The exNode can be serialized
to XML for sharing between processes or clients.
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Figure 2. Sample exNodes.
<exnode:mapping>
<exnode:metadata name="alloc_length" type="integer">100</exnode:metadata>
<exnode:metadata name="alloc_offset" type="integer">0</exnode:metadata>
<exnode:metadata name="exnode_offset" type="integer">100</exnode:metadata>
<exnode:metadata name="logical_length" type="integer">100</exnode:metadata>
<exnode:read>ibp://depot2:[port]/[key string]/READ</exnode:read>
<exnode:write>ibp://depot2:[port]/[key string]/WRITE</exnode:write>
<exnode:manage>ibp://depot2:[port]/[key string]/MANAGE</exnode:manage>

</exnode:mapping>

Figure 3. A serialized mapping in XML.
Figure 2 shows the exNodes for four logical files,

each 300 bytes long. The numbers shown in each exN-
ode indicates which depot stores an allocation for a cer-
tain portion of each file. Here, A is stored in an alloca-
tion on the depot 0, while B is replicated on the depots
0 and 1. C is striped over three depots. D is both repli-
cated and striped, where the first replica is striped over
three depots and the second one is striped over two de-
pots. Figure 3 shows the serialized exNode in XML for
a mapping to an allocation of C stored in the depot 2.
LoRS. The Logistical Runtime System (LoRS) pro-
vides APIs and command line tools that automate the
finding of depots via the L-Bone, creating and using
allocations and capabilities and creating exNodes. The
command line tools allow the user to upload, download,
augment (add replicas), trim (remove replicas), refresh
(renew IBP leases) and list (check the exNode’s status)
network files.1 The APIs are much more flexible than
the command line tools and can be used to build a more
complex system such as the facility described here.

3 Design

MPI-IO/L exploits the intermediate ADIO (Abstract
Device I/O) [16] layer in ROMIO. ADIO defines a set
of basic I/O interfaces, which can be used to implement
more complex, higher-level I/O interfaces such as MPI-
IO. For each supported file system, ADIO requires a
separate implementation (a “module”) of its I/O inter-
faces, and a new remote I/O-specific ADIOmodule was
added to ROMIO for MPI-IO/L. Figure 4 depicts this
architecture. The bold arrows show the data flow for a
write operation to a remote storage through MPI-IO/L.

3.1 Network File Access from MPI-IO

MPI-IO provides the standard interface for parallel
I/O from multiple processes onto a common logical

1We use the term network file to refer a file created by using
Logistical Networking.
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Figure 4. ROMIO’s layered architecture.

file. Thus, MPI-IO implementations such as ROMIO
assume processes in a run can access a shared file sys-
tem. Each process can access the file either coopera-
tively with other processes (collective I/O2) or indepen-
dently, and multiple processes can concurrently operate
on any regions of the file.
When multiple processes are working on a common

file, the file attributes (e.g., the mapping between logi-
cal and physical file contents) need to be shared among
the processes, and any process that accesses the file
can modify this metadata. Local file systems store the
metadata in an internal data structure such as the inode
at the same storage where the actual file data resides.
Logistical Networking, however, maintains the meta-
data, contained in the exNode, locally where the appli-
cation runs, while the file data can be stored remotely.
Also, according to the MPI-IO consistency semantics
(Section 3.3), each file data and metadata update need
not be immediately visible to other processes unless ex-
plicit synchronization methods are used. Accordingly,
in MPI-IO/L, each process keeps a separate exNode in
its memory and only locally updates it for each write.
At the user’s request (by calling sync or close), the exN-
odes are synchronized among processes, and thus the
changes made by other processes become visible.

3.2 MPI-IO/L ADIO Module

Our original plan for MPI-IO/L was to use libxio,3
which provides standard Unix I/O interfaces (e.g.,
open, close, read, and write) for network files. MPI-
IO/L could be built by replacing Unix I/O calls in
the UFS (Unix File System) ADIO module, with their
libxio equivalents. But, libxio is not yet complete and
was not specifically designed or optimized for parallel
I/O. Thus, we wrote our own ADIO functions, partly
based on libxio version 0.2, as described below.
Open and Close. LN Open and LN Close collec-
tively opens and closes a network file from multiple
processes. Typically, a file open is called with the file
name, and then its associated metadata is either cre-

2Collective I/O optimizes parallel I/O operations by using the
global knowledge of data distribution in memory and file [15].

3http://loci.cs.utk.edu/lors/distributions/libxio-0.2.tar.gz
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ated or located. Since the metadata of a network file is
not likely to be collocated with the file data, however,
LN Open is called with the name of an XML exN-
ode file along with other attributes such as file access
mode.4 MPI-IO/L assumes that the exNode file will be
accessed from a local file system and has only the root
process (with the rank 0) read and write the file.
When called, LN Open creates two data structures in

each process’s memory. First, it creates an in-memory
exNode that contains allocation- and mapping-related
information for the network file. If the given XML file
exists, the root first reads it into memory and broadcasts
its content to the other processes. Then, each process
creates an empty exNode in its memory and deserial-
izes the XML file content into it. If the file does not
exist, each process creates only an empty exNode.
Next, LN Open creates a depotpool on each process

that contains a list of depots that will be used for data
storage and retrieval. If a network file is open for read
only, the depotpool is created by extracting from the
XML file all the depots that provided allocations for
previous writes. If the file is open for write only, an
L-Bone server is contacted to find a set of depots that
satisfy the user’s storage requirements, such as the size
and duration of available storage space, the number of
depots to be found, and location preference. Such in-
formation can be passed to LN Open as hints by using
an MPI Info object. The user can also provide a list
of known depots that she wants to use. LoRS provides
separate APIs for the depotpool creation for read-only
and write-only cases.
When a file is open for read and write, both depot

extraction and search should be performed. However,
LoRS currently does not provide a single API for both
operations. Moreover, it does not allow the two APIs
used for read-only and write-only cases to be com-
bined. MPI-IO/L deals with this problem by manually
extracting depots from the XML file and adding them
to the L-Bone search results. This is not a desired solu-
tion, however, because LoRSmaintains only one depot-
pool, and thus the depots extracted for future reads are
included in the same depotpool that contains the ones
selected for writes. Hence, the read depots might be
used for future write operations, and if they fail to meet
the user’s storage requirements, an error will occur. A
better approach is to keep two separate depotpools for
reads and writes and constantly update the read depot-
pool whenever a new depot is used for a write. A future
version of LoRS should consider this option.
When each process contacts an L-Bone server for

writable files, it is likely to be given the identical list
of depots because each sends the same storage require-
ments to the L-Bone server. Since LoRS contacts the

4Following ROMIO’s file naming convention, the prefix
“ln:” should be used in front of the XML file name.

depots for allocations in the order they appear in the de-
potpool, if multiple processes request allocations at the
same time, all the write requests will be sent to the first
depot in the list. With multiple depots available in the
depotpool, performance is often better if we distribute
the write requests to multiple depots and thus trigger
concurrent writes to them. MPI-IO/L reorders the de-
pots in the depotpool by default to distribute concurrent
write operations to different depots.
Other hints can be passed at file open. They include

the hostname and port number of a preferred L-Bone
server, the size of the unit data transfer (called block),
the number of replicas to create at each write, the num-
ber of threads to be used for concurrent transfers, the
size of the memory buffer for buffered I/O (described
later), and the options for MPI-IO/L specific optimiza-
tions. After creating the two data structures on each
process, LN Open initializes internal variables accord-
ing to the passed hint values, allocates buffer memory
if buffered I/O is enabled, and then returns.
LN Close synchronizes exNodes from all the pro-

cesses, has the root serialize the synchronized exnode
to the XML file, frees internal data structures, and re-
turns. More on this is presented in Section 3.3.
Contiguous I/O. MPI-IO/L provides two modes of
contiguous I/O. Direct I/O issues remote I/O requests
immediately. Buffered I/O temporarily buffers the
write data using preallocated memory. The buffer holds
one contiguous subextent of the file, whose coverage
can change dynamically. If the write data cannot be
buffered in the current buffer in its entirety or will not
form a contiguous extent when combined with previ-
ously buffered data, the buffer is flushed by a direct
write before buffering the new data. If the write data is
larger than the size of the allocated buffer, only a buffer
size of data at the end is buffered; the rest is written di-
rectly. Buffered read is carried out from the buffer if it
contains at least a portion of the the requested data and
the nonbuffered portion is read directly.
Buffered I/O is not asynchronous because LoRS

does not have asynchronous I/O interface yet. It
is rather a write optimization to coalesce several
small writes into few large writes to reduce both per-
operation overhead and the number of allocations and
mappings created.5 It can reduce the number of the ac-
tual I/O operations to be performed if a certain buffered
region is overwritten or read multiple times. If asyn-
chronous I/O becomes available in LoRS, buffered I/O
can further improve I/O performance by write-behind
and prefetching.
LN WriteContig first checks the current I/O

mode. Direct write is chosen when the buffer size
is set to 0. Otherwise, buffered write is performed,

5For each write request, LoRS currently creates a separate al-
location and a mapping to it.
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Figure 5. Status of an exNode before and after
“Write 150 bytes at offset 100.”

which in turn can issue direct writes. Direct write is
performed by the LoRS function, lorsSetStore(),
which creates a new allocation, stores the data, creates
mappings to it, and places the mapping into the set.6 If
the data is larger than the block size, it is further divided
to issue smaller writes.
The write to an unwritten portion of the file is per-

formed by calling lorsSetStore() and adding the
newly created mapping(s) to the exNode. However, an
overwrite over existing mappings goes through the fol-
lowing steps. First, the mappings that overlap with the
write request are removed from the exNode and put into
a set. Second, each mapping in the set is either removed
if the logical extent that it points to will be completely
overwritten or trimmed if it will be partially overwrit-
ten. Third, lorsSetStore() is called to write the
requested data and create new mappings to new alloca-
tions in another set. Fourth, the two sets are merged,
and the mappings in the merged set are added to the
exNode. Figure 5 shows how an exNode is changed
after an overwrite. The original exNode contains three
mappings to three allocations (A, B, and C) across two
depots for a 300-byte-long logical file. When an oper-
ation that writes 150 bytes at offset 100 is issued, the
mappings to B and C overlap with the write request,
and they are either removed or trimmed accordingly. It
also writes the data to a new allocation D and updates
the exNode. In the figure, only the shadowed portion
of each allocation is mapped to a portion of the logi-
cal file. For example, after the write, only the second
half of C is mapped to the file. B is not mapped to the
file any more but remains until it expires or is revoked
explicitly. If the depots supported write-at-offset, the
overwrite could be performed without additional allo-
cation and the change of mappings in the exNode.
LN ReadContig also checks the I/O mode first.

If direct read is set, mappings that overlap with the
requested extent are identified and put into a set but
are not removed from the exNode this time. If
the mappings in the set form a contiguous extent,
lorsSetLoad() is called once for the set, which

6In LoRS, a set is defined as a collection of mappings, on which
a common operation can be executed in batch.

reads the allocations pointed to by the mappings in
the set. If holes7 are formed by unwritten portions
in the extent, however, the current implementation of
lorsSetLoad() will return an error when attempt-
ing to read that extent. To get around this problem, it
first identifies each contiguous region in the whole ex-
tent and which mappings will form the region. Then, it
issues a separate lorsSetLoad() for each contigu-
ous region and combines the results in the user buffer.
Noncontiguous I/O. Noncontiguous I/O can be per-
formed in a few ways. A naı̈ve approach is to issue
a separate I/O request for each contiguous region con-
tained in the extent, but this will incur overhead for
each I/O operation issued. ROMIO optimizes noncon-
tiguous I/O through data sieving [15]. For a noncon-
tiguous read, data sieving reads the whole extent of the
I/O request and picks out only the regions that are sup-
posed to be read. For a noncontiguous write, data siev-
ing reads the whole extent of the request into a buffer,
modifies the regions to be written in the buffer, and
writes the whole buffer back. Since the whole proce-
dure must be performed atomically, however, this ap-
proach works only with file systems that provide file
locking, making it unsuitable for MPI-IO/L.
MPI-IO/L provides two different options for noncon-

tiguous writes. First, it simply reuses ROMIO’s naı̈ve
noncontiguous write routine, which in turn makes sep-
arate direct write calls for each contiguous region in
the extent. Second, MPI-IO/L optimizes noncontigu-
ous writes by exploiting the fact that multiple map-
pings can be flexibly generated to a single IBP allo-
cation. For this, the data that will be written to the
noncontiguous extent is first packed into a contiguous
memory buffer. Then, the packed data buffer is writ-
ten into a single allocation or a small number of allo-
cations if the block size is smaller than the size of the
packed data. Next, a separate mapping is created be-
tween each contiguous region in the original extent and
its corresponding portion in the newly created alloca-
tion in the exNode. If a contiguous region is stored
across the boundaries of two allocations, two separate
mappings must be created for each allocation. This
method resembles a log-structured file system in that
it stores noncontiguous regions contiguously. How-
ever, LoRS currently does not provide a single API
that creates multiple arbitrary mappings to a single allo-
cation (lorsSetStore() creates only one mapping
per allocation). MPI-IO/L gets around this problem by
calling lorsSetStore() once to store the packed
data, memory copying the newly created mapping(s)
multiple times, modifying the offset and length fields

7We distinguish two types of holes. For the holes resulted from
unwritten portions of the file, we treat them as the regions filled
with unknown values. But, if holes are formed by already expired
allocations, reading such region is considered to be an error.
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for both logical and physical allocation in each copied
mapping accordingly, and adding the modified map-
pings, not the ones created by lorsSetStore(),
to the exNode. All these procedures are performed in
memory. A future version of LoRS should include a
single API that does the same job.
The second approach is expected to perform better

than the naı̈ve approach because it can significantly re-
duce the number of remote write calls and thus the
overhead associated with each invocation. Moreover,
the manipulation of mappings is done in memory and
is not expected to be time-consuming. However, it
will create the same number of mappings as (or even
more mappings in some cases than) the naı̈ve approach.
Also, even though a set of contiguous regions is packed
and stored in a single allocation, future reads whose ex-
tents overlap with the noncontiguous write extent can-
not recognize it, and thus be optimized, because the
exNode currently does not provide an efficient way
to describe such information. User can choose which
write option to use by providing a hint at file open. The
default is the optimized approach.
MPI-IO/L also provides two options for noncontigu-

ous read. As in noncontiguous write, each contiguous
region in the extent can be read by a separate read call.
Alternatively, data sieving can be used, because data
sieving read does not require locking. Both approaches
have trade-offs. While the naı̈ve approach involves
many more remote read calls and thus is likely to in-
cur higher overhead, data sieving causes extra data ac-
cess, which could be expensive for remote file systems.
Careful performance study is needed to decide which
to choose for a given noncontiguous read request. The
user can choose the method of noncontiguous reads by
providing a hint at file open. The default is data sieving.
Since noncontiguous I/O implementations eventu-

ally call file system-specific contiguous I/O calls,
buffered I/O can still be used, although each buffer is
supposed to hold a contiguous extent and thus is not of
much help for noncontiguous I/O. The only exception
is the optimized noncontiguous write, which does not
call contiguous write routine. In this case, if the current
buffer extent overlaps with the extent of the noncon-
tiguous write request, we simply flush the buffer before
taking actions for the noncontiguous write.
Other Functions. A sync operation causes all previous
writes to be transferred to the storage device so that the
changes (both to file data and to metadata) made by one
process will be visible from other processes. However,
IBP currently does not provide a mechanism for a file
data sync. lorsSetStore() returns only after the
data has been written to a local file system on the depot.
Therefore, in case of a depot crash, the data stored in
the file cache might be lost. For this reason, LN Sync
synchronizes exNodes only among processes, which is

described in detail later.
LN Delete is implemented by just deleting the lo-

cally stored XML file. The allocations used in the XML
file will be revoked when their expiration occurs. A
more proactive approach would be freeing the alloca-
tions at the time of delete, but this could cause prob-
lems if some of the allocations contained in the XML
file were used in other exNodes.
LN Resize is implemented in two ways. First, if

a file needs to be expanded, the root writes one byte
of null data at the last offset. Although an exNode has
a field to store the current file size, it is often recalcu-
lated based on the mappings in the exNode. Thus, it is
safer to create a mapping to the last byte than to mod-
ify the size field in each exNode. Second, if a file needs
to be shrunk, the mappings in the exNode are trimmed
on each process. LN Prealloc is implemented by
having the root write 0s to the file from the next byte
of the currently last offset up to the desired file size.
Both functions are collective and require exNode syn-
chronization so that the correct file size can be obtained
from nonroot processes after the calls.
Atomic mode and shared file pointer have not been

implemented yet. Atomic mode requires global lock-
ing either at the file system or MPI level. For MPI-
IO/L, it has to be at the MPI level because IBP does not
provide a locking mechanism. An implementation of
byte-range lokcs using MPI-2 passive target RMA (Re-
mote Memory Access) has been proposed [17]. How-
ever, because of the limitation in the current version of
MPICH2 that requires MPI functions to be called for
progress at the target, we have decided to wait until it is
fixed. ROMIO currently maintains a shared file pointer
by storing its value to a file. In MPI-IO/L, the shared
file pointer file should be kept in a local file system,
rather than a remote depot, for better performance, and
thus a different handling is required. Also, the shared
file pointer file should be accessed and updated atomi-
cally and requires locking.

3.3 Issues with MPI-IO Consistency Semantics

Consistency semantics define what happens when
multiple processes concurrently access a common re-
gion of the file. For example, the POSIX I/O consis-
tency semantics require strict sequential consistency,
where the result of a series of concurrent I/O opera-
tions should be as if they were performed in a certain
order. Moreover, it requires that each update to the file
be immediately visible to other processes. On the other
hand, by default, MPI-IO specifies a more relaxed set
of consistency semantics more suitable for parallel I/O,
and provides opportunities to optimize the performance
within the MPI-IO implementation. Users can, how-
ever, select stronger consistency semantics.
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The default (weak) consistency semantics in MPI-
IO guarantee that when multiple processes are writing
concurrently, the changes will be immediately visible
to the process that wrote them, but not to the other pro-
cesses right away unless explicit synchronization is per-
formed by sync8 or a special “atomic” mode is used.
When multiple writes are performed on the same re-
gion, the only way to guarantee sequential consistency
other than the atomic mode is to temporally separate
them from each other by surrounding each with open,
sync, or close calls. Otherwise, the result is undefined.
In MPI-IO/L each process locally updates its own

exNode at writes, and LN Sync synchronizes all the
in-memory exNodes to make all the updates visible to
every process. LN Sync also combines the current
content of the XML file with the in-memory exNodes to
incorporate changes made by other groups of processes
that concurrently opened the same file. If the other pro-
cesses wrote some data to the file and called LN Sync,
the XML files should contain new mappings, and these
should be visible. After synchronization, every pro-
cess will have identical in-memory exNode, and then
the root will serialize it to the XML file.
More specifically, LN sync first flushes the buffer

if buffered I/O is set. Then each process creates a set
that contains mappings that have been modified since
the last sync operation or file open if there has not been
a sync yet. To identify such “dirty” mappings, we tag
a newly created or modified mappings at each write.
Next, we read the mappings contained in the XML file
and put them into the new set. The intention is to reflect
the changes made to the file by others who open the
same file concurrently. If some of the mappings from
the file overlap with the dirty mappings, we trim the
mappings from the file so that only our changes will be
visible. Next, everybody broadcasts to everybody else
its dirty mappings. The mappings from the file will
be further trimmed by other processes’ dirty mappings,
too. Then each process combines all the dirty mappings
from other processes, including its own and combines
them to the mappings from the file. The root will then
write the combined mappings to XML files. LN Open
reads the mappings directly from the file, so if someone
else sync’ed or closed the file before the open, it should
read the changes. Close also calls sync.
MPI-IO guarantees sequential consistency within a

single process. Thus, the data written by a process
should be immediately visible for the following reads
from the same process. With the two-phase implemen-
tation of collective I/O in ROMIO, however, the data
will be shuffled among the processes to maximize the
I/O performance. Thus it is likely that the data re-
quested to be written or read by one process will ac-

8File open and close calls have the same effect.
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Figure 6. Small contiguous I/O.

tually be written or read by another process. This sit-
uation can cause problems in MPI-IO/L because of the
local exNode update. Suppose that a collective write
operation was issued and a portion of data that process
0 requested to write is actually written by process 1.
Right after the collective write, if process 0 attempts
to read the same data independently, then process 0’s
exNode has a mapping only to partial data and the write
will not be fully visible, thereby violating MPI-IO con-
sistency semantics. In order to prevent this problem,
in MPI-IO/L, LN Sync is called before each collective
read operation and after each collective write operation.

4 Results

We conducted experiments between the Jazz Linux
cluster at Argonne National Laboratory and depots at
the University of Tennessee at Knoxville.9 Jazz com-
prises 350 nodes, each equipped with a 2.4 GHz Pen-
tium Xeon, either 1 or 2 GB of RAM, and 80 GB of
local disk space. Jazz nodes are connected by both
Myrinet 2000 and Fast Ethernet. We used Fast Ether-
net to emphasize that remote I/O performance is dom-
inated by wide-area network bandwidth rather than by
the local interconnect. We expect that the performance
would not vary much withMyrinet. Jazz also has 20 TB
of shared disk space among all the nodes on Global File
System (GFS) and Parallel Virtual File System (PVFS).
The XML files were created and accessed on PVFS. All
the numbers were averaged over five or more runs; the
error bars show 95% confidence interval.

4.1 Synthetic Benchmark Performance

We devised a synthetic benchmark code that per-
forms both contiguous and noncontiguous I/O opera-
tions with various parameters from a single Jazz node
to a single depot.
Contiguous I/O. Contiguous direct I/O performance
was measured by calling MPI File write and
MPI File read for a contiguous extent of buffer.
Figure 6 presents remote I/O bandwidth for small

9For experiments, we used pre-selected depots instead of rely-
ing on an L-Bone server.
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Figure 7. Large contiguous writes.

amounts of data up to 1 MB, with 1 MB block size and
a single thread. The graph shows that I/O bandwidth
increases as the data size increases, because the startup
overhead associated with each remote I/O call domi-
nates smaller data transfer cost. IBP maintains persis-
tent TCP/IP connections, and for the numbers shown
in this section, we excluded the first measurement that
includes the connection establishment cost. The graph
also shows that for small transfer, reads are faster than
writes, because writes involve additional overhead for
preparing a new allocation on the depot.
Figure 7 shows the remote write bandwidth for larger

data, ranging from 1 MB to 64 MB, with a single
thread. For each transfer, we varied the block size
from 1 MB up to the transfer size, to observe the ef-
fect of block size on performance. The graph shows
that the remote write bandwidth increases up to cer-
tain point (2 MB here) but remains more or less the
same after that, because per-I/O request overhead be-
comes negligible compared to the actual transfer cost
as the data size increases. Also, for each write size,
larger block sizes increase write bandwidth, because
with larger block size, the number of I/O calls issued
to transfer the same amount of data decreases, hence
the aggregate per-I/O request overhead. In the config-
uration used here, the performance increase becomes
small after a 4 MB block size. We also ran the same
benchmark with a previous version of IBP that did not
maintain a pool of persistent TCP/IP connections. With
this IBP, the block size effect was much bigger than
what is shown in this graph, because each I/O call re-
quires separate TCP/IP connection establishment. An-
other benefit of using larger blocks is that it will de-
crease the number of allocations created for each write
and the number of mappings to them. Because of the
space constraint, we show only the write performance
here. The reads showed a similar trend.
We also compared the performance of directly call-

ing lorsSetStore() and lorsSetLoad() to the
numbers shown above, to measure the overhead in-
curred by adding the MPI-IO and ADIO layer. The
overheads observed were all less than 1% of LoRS

function costs, and thus negligible.
Figure 8 shows the multithreaded I/O performance

for 64 MB of data. We varied the block size from 1 to
64 MB and used up to 16 threads for concurrent trans-
fer. As mentioned, the unit of transfer in LoRS is a
block, and each thread transfers a block of data at a
time. For each block size, we controlled the number of
threads so that the number of threads times the block
size did not exceed the amount of data to be accessed.
Figure 8(a) presents the threaded write performance.

The graph shows that the bandwidth increases as the
number of threads increases up to a certain point (about
8 threads here) and remains more or less constant af-
ter that. It also shows that with the same number of
threads, larger blocks perform better. As the block size
increases, however, the maximum degree of concur-
rency achievable decreases, and thus the overall max-
imum write bandwidth cannot be reached with larger
blocks. In our experiments, the maximum throughput
was achieved with block sizes from 2 to 8 MB. There
are some exceptions where larger blocks perform worse
than smaller blocks with the same number of threads,
such as 8 MB block with 6 threads and 4 MB block
with 12 threads. The reason is that the amount of data
to be written (64 MB) cannot be a product of any of
the block sizes used in the experiments and these num-
bers of threads. Therefore, at the last round of trans-
fer, only a subset of threads will transfer the data, and
with the larger block size the performance penalty will
be higher. This situation suggests that the number of
threads and the block size should be carefully chosen
according to the expected amount of data access when
large transfer is common.
Figure 8(b) presents the threaded read performance

with the same configurations and shows similar trends
to the writes. One difference is that the throughput with
smaller blocks becomes much lower than with larger
blocks and the same number of threads, implying that
IBP depots do not handle many small concurrent reads
well. On the other hand, small writes are likely to be
performed efficiently with the help from the file cache,
and we presume that it is true in our write tests.
Figure 9 compares the performance of buffered

writes to that of direct writes. We wrote total 16 MB
of data using different write sizes from 1 KB to 8 MB.
Thus, if the write size is 1 KB, 16384 write operations
are issued, compared to 2 writes with 8 MB size. All
the writes were performed with 8 MB block size, a sin-
gle thread, and a 16 MB buffer (for buffered writes).
Direct write performs the same number of remote write
operations as the number of write operations issued,
while buffered write coalesces all the writes and per-
forms the remote write only once. The buffered write
performance shown in the graph includes the sync cost,
while direct write is shown without the sync. The re-
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Figure 8. Multithreaded contiguous I/O performance.
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Figure 9. Buffered write vs. direct write.

sult shows that the direct write performance drops sig-
nificantly with larger number of write operations. As
mentioned, this is due to the overhead incurred by each
write operations. On the other hand, the buffered write
performance stays still regardless of the write size, be-
cause the actual remote write operation is issued only
once in all cases. In our extreme case with 1 KB write
size, buffered write performs more than 189 times bet-
ter than direct write. This result suggests that buffered
write should be considered when a series of sequential
and contiguous writes are expected and some amount
of extra memory is available.
The graph also shows the size of the XML file that

each configuration creates (dotted lines). Each map-
ping takes about 1 KB of XML code, and the size of the
resulting XML file increases as the write size decreases
and thus the number of remote writes and created map-
pings increase. With 1 KB write size, the size of the
XML file exceeds 16 MB. On the other hand, buffered
I/O minimizes the number of remote write performed
to one, and the resulting XML file is a little bit over 1
KB. The size of XML files affects the performance of
file open and sync that reads and writes the XML file.
The graph does not show the effect of sync in direct I/O
because the sync cost is quite small compared to the ac-
tual write cost, but the sync-only cost with 1 KB write
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Figure 10. Performance comparison between the
two noncontiguous write options.

size was more than 9 seconds, which is longer than the
buffered write and sync cost combined.
Noncontiguous I/O. Figures 10 and 11 show the non-
contiguous I/O performance measured with different
I/O options and access patterns. In these experiments,
the data is stored contiguously in memory but writ-
ten noncontiguously on disk, as is common in scien-
tific workloads. An example of this kind of access
is where a 3-D array is distributed across the mem-
ory of processors in a HPF-style (BLOCK, BLOCK,
BLOCK) fashion and a processor attempts to access its
own array chunk from the file where the global array
is stored in row-major order. For the experiments, the
file view was first set for the strided accesses and then
MPI File Write or MPI File read was called.
Figure 10 shows the performance of the two noncon-

tiguous write approaches for 16 MB of data with a 16
MB block size and a single thread. We fixed the total
amount of data to be written to 16 MB but varied the
number of contiguous regions in the extent from 1 to
64. In this access pattern, the stride is twice the size of
each contiguous region; that is, each contiguous region
is followed by a hole of the same size. The graph shows
that the optimized write performance is almost constant
regardless of access patterns, because this approach is-
sues only a small number of remote write calls (only
one here) and the manipulation of mappings is done in
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Figure 11. Performance comparison between the two noncontiguous read options.

memory and thus is fast. However, the naı̈ve write per-
formance degrades as the number of regions increases,
because of the overhead incurred by many write calls.
The performance gap is expected to keep increasing
when finer noncontiguous access patterns are used. The
size of the resulting XML file is almost the same for
both approaches because the optimized approach does
not reduce the number of mappings.
Figure 11(a) presents the noncontiguous read perfor-

mance using the same configuration for both naı̈ve and
data sieving reads. For the reads, 32 MB of data was
contiguously written to the depot prior to the access.
The graph shows that both read performances decrease
as the number of contiguous regions increases, but for
different reasons. For the naı̈ve approach, the perfor-
mance degradation is due to the multiple I/O call over-
head. On the other hand, the decreased performance for
data sieving is due to the fact that the extent of the non-
contiguous read (and the amount of unnecessary data
read) increases with the number of contiguous regions.
The graph shows the total amount of data that should
be read for each approach (dotted lines).
As we keep increasing the number of regions for

finer-grained read access, the data sieving performance
is expected to converge to half of the 16 MB contigu-
ous read performance (shown as the one region perfor-
mance in the graph), as the total extent to be read con-
verges to 32 MB. But, the naı̈ve approach performance
is likely to keep decreasing as we increase the number
of regions, because of the excessive number of read op-
erations issued, and it is expected to start performworse
than data sieving after some point. Thus, it is important
to find the balance point and choose the faster approach
according to the access patterns.
We also tested noncontiguous read performance

where the data is read from a noncontiguously writ-
ten file by the noncontiguous write test above. In this
case, however, data sieving loses its benefit for finer ac-
cesses because now a separate mapping exists for each
contiguous region and the data sieving will have to is-

sue multiple read requests, one for each mapping, even
though it wants to read a contiguous extent from the
logical file. This is still true when noncontiguous data
was written to only a small number of allocations using
the optimized method. Although several contiguous re-
gions were packed and written to a single allocation,
multiple read requests have to be issued to access them,
because the current exNode structure does not contain
the information on how the data was written.
Figure 11(b) shows the performance from another

noncontiguous read test, where we fixed the number of
contiguous regions to 16 and the stride to 2MB and var-
ied the size of each region from 256 KB to 1.75 MB.
Unlike the previous tests where a constant amount of
data was read, here the amount of requested data in-
creases as the size of each region increases. The graph
shows both the apparent read bandwidth (solid lines)
and the amount of data that must be read to perform the
operation (dotted lines). For the naı̈ve read, the amount
of requested data and the amount of read data are the
same, and its performance slightly increases as the re-
gion size increases, because of the diminished effect of
the I/O call overhead for larger transfers. For data siev-
ing, regardless of the region size, the amount of actual
read is almost constant, close to 32 MB, and thus the
apparent read bandwidth is low with smaller regions
and keeps increasing for larger regions. But, it did not
catch up with the naı̈ve read performance in the region
sizes used in our experiments. This result again con-
firms that the deterministic factor between data sieving
read and naı̈ve read is the number of I/O calls to be
issued and the amount of unnecessary data read.

4.2 Tiled I/O Performance

To better evaluate the MPI-IO/L performance for
real scientific applications, we used the tiled I/O
benchmark, which implements representative I/O ac-
cess patterns common in many parallel scientific
applications—parallel I/O for distributed multidimen-
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Figure 12. A 2× 2 tile mesh and its file representa-
tion.

sional arrays. Its name comes from the fact that the
benchmark simulates the I/O operations needed to vi-
sualize a single image file with an array of displays (or
tiles) for higher-resolution playback on a larger screen,
but it can also be used for writes. In the benchmark,
tiles are created by dividing a 2-D data set along each
dimension, and each tile belongs to a compute process.
The tiles are written to and read from a global row-
major order file.
In our experiments, 4096 × 4096 arrays with 4-byte

elements were distributed across a 4×4 tile mesh. Each
tile is identical in shape (1024 × 1024) and size (4 MB
each), totaling 64 MB of data per array. The original
tiled I/O benchmark lets users choose between collec-
tive and noncollective I/O for the array file access. We
modified the code so that different noncontiguous I/O
options can be chosen, too.
The first set of experiments measures the tiled I/O

performance between 16 Jazz nodes and the same IBP
depot used for previous experiments. Each process ac-
cesses files by direct I/O with a single thread and 4 MB
block size, the same as the tile size.
For the writes, we tested both collective and non-

collective approaches. As mentioned, collective I/O
optimizes parallel I/O performance by issuing fewer,
larger contiguous I/O requests using the knowledge of
the global data distribution. Data reordering among
processes is typically required for this. The tiled I/O
benchmark accesses the entire array distributed across
multiple processes and thus is a good fit for collec-
tive I/O. Since the entire extent of the array data does
not contain any holes, collective writes can be carried
out by using contiguous writes only. Without collec-
tive I/O, each process should write its own tile data (a
subarray) to the common file, and this procedure re-
quires noncontiguous writes. Figure 12 shows how tiles
in a 2 × 2 mesh are stored in a row-major-order file.
Since rows in each tile are distributed across the whole
extent of the file, accessing a tile will be noncontigu-
ous. But, unlike collective I/O, communication for data
reorganization among processes will not be required.
We used two noncontiguous write options available in
MPI-IO/L: naı̈ve and optimized.
Figure 13(a) presents the tile write performance with

different I/O approaches. The graph shows two bars for
each write option. The first shows the bandwidth of the

write operation only, while the second one shows the
bandwidth with the sync cost included. This is reason-
able because in many write-oriented simulations differ-
ent data sets are stored in different files and sync cost is
visible when closing each file. With collective writes,
the tile data is first shuffled among 16 processes to opti-
mize write access patterns, and then each process con-
currently issues a 4 MB write request, resulting in 16
mappings and allocations. Even though the local com-
munication cost is included, the collective write per-
formance is better than that of the single process write
with 16 threads shown earlier, because the data transfer
is performed via multiple network interface cards and
also it does not incur the context switching costs. With
the sync cost included, the collective write bandwidth
drops about 14%. Since the sync cost depends on the
number of mappings in the exNode, if we collectively
write larger data with the same number of mappings by
increasing the block size, the performance drop caused
by the sync is expected to decrease more.
With the noncollective write with the naı̈ve ap-

proach, performance drops significantly. Each process
issues 1024 remote write requests (1024 rows in the
subarray), each of which writes 1024× 4 = 4096 bytes
of data, and thus the overhead associated with multiple
write requests adds up and hurts the performance. This
will create 16384 (1024 × 16) mappings in the exN-
ode, and the resulting XML file will be over 16 MB,
1024 times larger than the XML generated for collec-
tive write. This large exNode significantly increases
the sync cost. Indeed, in our experiments, the sync for
noncollective writes took longer than twice of the col-
lective write and sync cost for the same data set.
With the optimized approach, the write-only band-

width becomes about 12% higher than that of the col-
lective write because it also performs only 16 remote
writes (one per each process) like the collective write
but does not involve local communication cost. It does
include the cost to create 1024 mappings on each pro-
cess, but that seems negligible. With the sync cost,
however, the write bandwidth becomes almost one-
fourth of the write-only bandwidth, because optimized
writes create the same number of mappings as the naı̈ve
approach does and thus sync becomes expensive for the
exNode with 16384 mappings.
Therefore, even with slightly worse write-only per-

formance than optimized noncontiguous writes, collec-
tive write seems to be a clear winner among the three
approaches for the following reasons. First, collec-
tive write reduces the overhead incurred by each write
call invocation by issuing fewer larger write operations.
Second, since it only issues fewer write requests, fewer
mappings are created, and thus it decreases the cost as-
sociated with sync. More benefits that collective write
can bring are described below.

11



Tile Write Performance

0

4

8

12

16

20

collective write noncollective write (naïve) noncollective write
(optimized)

W
rit

e 
Ba

nd
w

id
th

 (M
B/

s)

write only write + sync

(a)

Tile Read Performance

0

5

10

15

20

25

collective read noncollective read (d.s.) noncollective read (naïve)

Re
ad

 B
an

dw
id

th
 (M

B/
s)

read only (tile-coll) open + read (tile-coll) read only (tile-noncoll) open + read (tile-noncoll)

(b)
Figure 13. Tile I/O performance.

The tile read performance was also measured for
both collective and noncollective read, and both data
sieving and naı̈ve noncontiguous read were used
for noncollective reads. We also evaluated the
read performance from two network files, one writ-
ten collectively (tile-coll) and the other written
noncollectively with optimized noncontiguous writes
(tile-noncoll). The former file contains 16 map-
pings to 16 different allocations, while the latter con-
tains 16384 mappings to the same number of alloca-
tions (1024 mappings to each allocation).
Figure 13(b) shows the tile read performance. In this

graph, we show the read bandwidth with and without
file open cost, to see the effect of opening a file with a
large number of mappings. We did not include the sync
cost here because it is negligible when the file is open
for read only. The graph shows that the collective read
performance with tile-coll yielded the best perfor-
mance among the configurations used. This is because
collective read issues fewer, larger remote read requests
and thus reduces the effect of I/O call overhead. When
the open cost is included, the bandwidth drops about
25%. As mentioned above, since the open cost is pro-
portional to the number of mappings that the exNode
contains, the gap between the two bars will decrease if
we read larger data with the same number of mappings.
When the same collective read is performed on

tile-noncoll, however, the read bandwidth signif-
icantly decreases. Compared to the collective read with
tile-coll, a factor of 17 performance decrease was
observed. This is because even though collective read
issues larger read requests, each large read request is
translated into many more small remote reads because
of the way tile-noncoll was written. Also, the
cost of opening tile-noncoll is more than twice
the collective read cost of tile-coll. When this
open cost is included, the performance drops further,
although not obvious in the graph. This result again
confirms why collective writes can improve I/O perfor-
mance in MPI-IO/L, in this case, by reducing the num-

ber of mappings in the exNode. The way how a file was
written affects not only the sync performance but also
future open and read performance.
When tile-coll was read noncollectively with

the data sieving, about one-third of the collective read
bandwidth was achieved, because the data sieving reads
more data than what is requested. In our configura-
tion, the size of each tile is 4 MB, but the data sieving
read reads almost 16 MB of data on each process and
then picks out the requested tile data out of the data
read. Moreover, when the whole array is read with
the data sieving, each tile is read almost four times,
while the collective read can effectively avoid this re-
dundancy. Thus, although the data sieving issues larger
read requests (like the collective read), it is not a desir-
able option for distributed global array reads, especially
with slow remote I/O, and hence its use should be re-
stricted for true noncontiguous I/O patterns. Reading
tile-coll noncollectively with the naı̈ve approach
performs even worse than the data sieving. The naı̈ve
approach issues 1024 remote read requests on each pro-
cess (16384 in total), and the per-I/O call overhead for
small reads hurts the performance too much. This is an
example where the data sieving works better than the
naı̈ve approach, but both approaches perform far worse
than collective reads. When the open cost is included,
the performance drops about 10%.
When tile-noncoll is read noncollectively,

however, the data sieving performs much worse than
the naı̈ve approach. The naı̈ve approach issues the
same number of remote read requests that it issues
for reading tile-coll, resulting in similar perfor-
mance. However, since the data sieving reads extra
data and these extra read requests are translated into
many small remote reads because of the way the file
was written, more overhead is incurred and eventually
the performance decreases further. In our configura-
tion, almost four times more read requests that read
4096 bytes remotely are issued for the data sieving than
for the naı̈ve approach, which issues 1024 read requests
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Figure 14. Effect of reordering depots in the depot-
pool on collective write performance.

on each process. For systems like IBP depots where
the overhead for small I/O request is higher, it is criti-
cal for performance to reduce the number of remote I/O
requests. We note that even though larger read requests
are made, they could issue many small read requests
according to how the file was originally written.
For data sets with higher dimensions, this perfor-

mance discrepancy between reading collectively and
noncollectively written files is likely to increase be-
cause, with higher dimensionality, more complex non-
contiguous access patterns that contain many more con-
tiguous regions are likely to be expected. Thus, the
benefit of reducing the number of mappings created be-
comes even more important.
When the tile data is accessed from multiple depots,

better I/O performance is expected than with a single
depot, because multiple machines and disks are han-
dling concurrent data streams and performing disk I/O.
As discussed, however, even with multiple depots, if we
do not carefully reorder depots in the depotpool, multi-
ple write requests can be concentrated to a single or a
small number of depots and achieve worse performance
than what is potentially possible.
Figure 14 shows how the depot reordering can affect

collective write performance. We used four IBP depots,
named acre, bushel, gill, and rod, to collectively write
64 MB of data from 16 processors on Jazz. The graph
shows three groups of bars. The first group shows the
write performance where no depot reordering was per-
formed and thus each processor on Jazz was given the
same list of depots. In this case, all the processors start
with the first depot in the list and perform the write on
the same depot even though multiple depots are avail-
able in the list. Each bar in the first group shows the
write-only bandwidth when each of the four depots is
placed at the beginning of the list. The graph shows
two relatively faster depots (acre and bushel) and two
slower depots (gill and rod).
The second group shows the performance where the

depot list is partially reordered. In this configuration,
half of the processors are given a depot list and the

other half another list where depots are ordered differ-
ently from the first list. The graph shows the perfor-
mance where two slow and two fast depots appear first
in the lists. In both cases, the performance increases
about 20–50% compared to that of the faster depot be-
tween the two. The third group shows the result with
the full reordering, where all the four depots appear
first in the lists and a group of four processors is given
each list. With this full ordering, the performance in-
creases about 47% of the performance with bushel only,
the fastest one. This performance was achieved even
though slower depots are used for the writes. When
very slow depots are used, however, the performance
may drop with the full ordering. For further optimiza-
tion, therefore, reordering should consider the perfor-
mance of each depot. For remote reads from multi-
ple replicas, LoRS implements dynamic load balancing
among the participating depots [13].

5 Discussion

Logistical Networking was not originally designed
for parallel I/O. Typical users run command-line tools
to access remote files, and the original design works
well for such uses. For parallel I/O, however, its current
design imposes limitations that might seriously affect
the performance. This section discusses such issues
and suggests how we can improve Logistical Network-
ing to make it work better with parallel I/O systems.
Downsizing exNodes. LoRS currently creates a new
allocation and a mapping to it for each write. Thus,
fine-grained writes or frequent updates on the file could
result in very large exNodes. With larger exNodes,
open, sync, and close, which access the XML repre-
sentation of exNodes, become more time-consuming.
Large exNodes also take more memory on each process
when stored in in-memory structures and thus reduce
the amount of memory that can be used for storage,
buffering, and caching of data. Moreover, it is not con-
venient to share such bulky exNodes with other people.
One can use different ways to downsize the exNodes.

First, the number of mappings generated by applica-
tions can be reduced by observing the access patterns
and eagerly using the available optimizations. For ex-
ample, buffered I/O and collective I/O are useful to co-
alesce small I/O requests and thus reduce the number
of actual writes. Also, using a larger block size can re-
duce the number of allocations and mappings generated
for each write. These approaches will also bring better
performance by reducing the overhead associated with
each I/O call.
One can also change the in-file exNode representa-

tion. XML is easy to understand and flexible but takes
much space because it is text-based. ExNodes can be
described more compactly if represented in binary for-
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mat. For example, exNodes can be serialized to a file as
they are stored in memory. For this, a certain order to
store each field and special tags to distinguish one field
from another might be required. A tool that parses the
binary representation and converts it into XML or other
user-friendly format could be provided, too.
Another way to downsize the exNodes is to keep the

XML format but rearrange the order of fields appearing
in the file. Currently, each mapping is listed separately,
regardless of the allocation it points to. With our op-
timized noncontiguous writes, however, multiple small
writes can be packed into few bigger ones, and thus
multiple mappings can now point to the same alloca-
tion. Mappings to the same allocation have identical
values for certain fields, such as the three long capabil-
ity key strings, and with the current representation, the
same values are repeated redundantly. A better way to
avoid such redundancy is to introduce a hierarchy be-
tween allocations and mappings so that for each alloca-
tion, allocation-related information such as capability
keys appears first and then a list of mappings associ-
ated with the allocation. In addition to reducing the
exNode size, this approach provides an opportunity for
noncontiguous read optimization, as described below.
The implementation of the write-at-offset IBP can

also reduce the size of the exNode. Currently, for an
overwrite to an existing allocation, the overwritten por-
tion is written to a new allocation, resulting in addi-
tional mappings. The write-at-offset IBP will allow the
overwrites to be performed on the existing allocation it-
self and thus will not increase the number of mappings.
Finally, off-line data rearrangement can reduce the

number of mappings by contiguously rewriting non-
contiguously stored data to new allocations. This ap-
proach resembles the disk compression utility and re-
quires extra network bandwidth and storage space.
Efficient Noncontiguous I/O Support. MPI-IO/L’s
optimized noncontiguous writes pack and write con-
tiguous regions in a noncontiguous extent into a single
allocation. But, because of the limitation of the cur-
rent exNode representation, the future reads whose ex-
tents overlap with such noncontiguously written extent
cannot detect this fact and are not optimized properly.
Instead, they are performed by issuing separate small
read requests to the same allocation. Another example
where multiple mappings point to the same allocation
is the overwrite to an existing allocation. If the middle
portion of the allocation happens to be overwritten, it
will result in three mappings, one that points to the new
allocation for the overwritten portion and two that point
to the head and tail portions of the original allocation.
If the exNodes are organized as proposed above

where a set of mappings that point to the same alloca-
tion is grouped under the allocation information, read
could be further optimized as follows. First, we iden-

tify the allocations that overlap with the requested read
extent. Next, for each such allocation, we determine
whether contiguous or noncontiguous read needs to be
performed by examining the mappings that point to the
allocation. If noncontiguous read is detected, then data
sieving could be performed within that allocation for
better read performance. Since this approach performs
data sieving on each allocation, instead of for the whole
noncontiguous read extent, it could reduce the amount
of extra read significantly. Especially if a noncontigu-
ously written file will be read again noncontiguously
with the same or similar access patterns (e.g., noncol-
lectively reading tile-noncoll in the previous sec-
tion), such noncontiguous read operations can be car-
ried out with contiguous reads.
If noncontiguous I/O is supported at the IBP level,

further optimization is possible. For example, list I/O
[16] allows the description of a noncontiguous I/O ac-
cess using a single I/O interface, reducing the per I/O-
call overhead. Similarly, datatype I/O [7, 10] pro-
vides an interface where a noncontiguous I/O pattern is
conveniently described using a MPI-derived datatype.
Once the underlying file system understands such ad-
vanced interfaces, it can better optimize the noncon-
tiguous I/O performance.
Asynchronous I/O. Asynchronous remote I/O is an-
other desired feature in Logistical Networking. Con-
sidering that the available network bandwidth to many
users is still often low, asynchrony in remote I/O could
provide a powerful optimization for many applications
by hiding remote I/O latency through write behind or
prefetching [10]. Particularly, asynchronous I/O could
be useful when an application needs to replicate its out-
put data. In such a case, the primary copy can be writ-
ten synchronously, but the other copies can be created
asynchronously, not stalling the application further.

6 Related Work

A few efforts have provided remote I/O through
MPI-IO, all using ROMIO as the testbed. RIO [9] pro-
vided a preliminary design and proof-of-concept im-
plementation of remote file access in ROMIO. RIO en-
sured portability by using the ADIO layer and later
work, including MPI-IO/L, followed the same ap-
proach. However, RIO required a certain processor
configuration that could cause inefficiency and relied
on a legacy communication protocol. RFS [10] is a
recent work that removed RIO’s shortcomings. RFS
seeks to reduce the apparent remote write cost by over-
lapping writes with subsequent computation phases
through aggressive memory buffering. Both RIO and
RFS adopt a client-server architecture, where a remote
I/O request from the client is shipped to the server and
executed there. On the other hand, MPI-IO/L translates
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each remote I/O request into LoRS calls and relies on
Logistical Networking to take care of data transfer and
storage. Remote I/O using GridFTP for ROMIO [3]
uses a similar approach.
Like Logistical Networking, specialized data trans-

fer and storage services such as GridFTP [2], Kanga-
roo [14], and GASS [6] can be used as a means of
wide-area data transfer for I/O libraries. These mecha-
nisms provide useful remote I/O features such as se-
cure communication, a chainable server architecture,
and workload-specific I/O optimizations. A metadata
catalog system such as the MCAT in the Storage Re-
source Broker (SRB) [4], which is used to identify and
discover resources and data sets of interest using their
attributes instead of physical file names, is another use-
ful feature to have in an I/O system. For Logistical Net-
working, a simple, Web-based catalog system called
Logistical Distribution Network (LoDN) was built re-
cently. The use of LoDN together with MPI-IO/L will
further improve the usability of the system.

7 Conclusions and Future Work

We have presented the design and implementation
of MPI-IO/L, an efficient remote I/O support for MPI-
IO using Logistical Networking. Leveraging Logisti-
cal Networks, MPI-IO/L enables high-performance re-
mote I/O and provides a flexible way to describe net-
work files and to share them with other people. Our im-
plementation with ROMIO provides various options for
basic I/O operations and the performance study shows
that each approach has its own advantages and dis-
advantages. We currently let the user choose the I/O
methods that work the best with her own application’s
I/O needs. We have also identified a number of areas
in which Logistical Networking could be improved to
better suit the needs of parallel I/O.
Future work includes the implementation of atomic

mode and shared file pointers, improved buffered I/O
that buffers multiple extents, noncontiguous I/O per-
formance analysis via performance models, and eval-
uation with real applications on production scales.
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